
Tackling
Performance and Correctness Problems in

Database-Backed Web Applications

Shan Lu (shanlu@uchicago.edu)

1https://hyperloop-rails.github.io/

Collaboration E-commerce

2

Web Applications

Social Network

3

Performance is important

Pinterest reduced page latency by 40% and

increased traffic and sign-ups by 15%.

BBC found they lost an additional 10% of users for every
additional second their site took to load.

COOK reduced average page load time by 850
ms which increased conversions by 7%

Faster page loading contributed to a 12-13%
increase in sales, by AutoAnything tech
executive.

For Mobify, every 100ms decrease increases
1.11% conversions and 38000$ annual revenue.

Walmart found that for every 1 second improvement in
page load time, conversions increased by 2%, which is
$200,000 increase in revenue

4

Only 6 people went through on the first day

Performance issues happen all the time
100%

80%

60%

40%

20%

0
0 2 sec 4 sec 8 sec 12 sec 16 sec 20 sec 24 sec

Webpage load time distribution (CDF)

20% of pages take >2s

5

blogs.html

<p> This is Junwen’s defense. </p>

<p> Performance and correctness problem </p>

<p> Junwen is graduating. </p>

<p> Hyperloop can improve perf of web app. </p>

<p> Panorama is view-centric </p>

<p> PowerStation is a RubyMine plugin</p>

…

Traditional static webpage

http://www.app.com/blogs
…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

Modern web app: dynamic content

6

User interface Application Server

@blogs = read(‘blogs.json’)

blogs.json
{
"blog": {

"title": "This is…"
}
"blog": {

"title": "Performance…"
} …
}

http://www.app.com/blogs
…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

blogs.html

<p> This is Junwen … </p>

<p> Performance and… </p>

<p> Junwen is on … </p>

…

This is Junwen …

Performance and…

Junwen is on …

<p><%=blog.title %></p>

<% @blogs.each do |blog|%>

<p><%=blog.title %></p>

<% end %>

@blogs

User interface

Modern web app: big data
Application Server DB engine

http://www.app.com/blogs
…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

@blogs = read(‘blogs.json’)

blogs.json
{
"blog": {

"title": "This is."
}
"blog": {

"title": "Performance"
} …
}

<% @blogs.each do |blog|%>

<p><%=blog.title %></p>

<% end %>

@blogs = read(‘blogs.json’)

id title

1 This is Junwen’s defense.

2 Performance and correctness

3 Junwen is graduating.

4 Hyperloop can improve …

… …

Table: blogs

DB engineUser interface

Modern web app: big data
Application Server

<% @blogs.each do |blog|%>

<p><%=blog.title %></p>

<% end %>

blogs.json
{
"blog": {

"title": "This is."
}
"blog": {

"title": "Performance"
} …
}

http://www.app.com/blogs
…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

DB engineUser interface

Modern web app: big data

select * from blogs

Application Server

<% @blogs.each do |blog|%>

<p><%=blog.title %></p>

<% end %>

id title

1 This is Junwen’s defense.

2 Performance and correctness

3 Junwen is graduating.

4 Hyperloop can improve …

… …

Table: blogs

http://www.app.com/blogs
…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

@blogs = read(‘blogs.json’)@blogs = ???

Application Server

class Blog{

}

ORM

int id
string title

DB engineUser interface

Modern web app: big data

<% @blogs.each do |blog|%>

<p><%=blog.title %></p>

<% end %>

id title

1 This is Junwen’s defense.

2 Performance and correctness

3 Junwen is graduating.

4 Hyperloop can improve …

… …

Table: blogs

select * from blogs

http://www.app.com/blogs
…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

@blogs = ???@blogs = Blog.all

Performance challenges (1)

11

Query optimization

Indexing

…

Dead code elimination

Loop invariant motion

…

Lack of App-DB cross-stack optimization

@blogs = Blog.all
...
@blogs = Blog.all
...
@blogs = Blog.all..

Inefficient application code

> 10X slow down!

Inefficient database design

What queries? Application semantics?

Treating ORM APIs as a black box

select * from blogs
...
select * from blogs
...
select * from blogs

<p> <%= @count %> comments</p>

http://www.app.com/blogs

…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

10001 comments

12
Lack of DB-aware user-interface optimization

@count=Comment.join(…).where(…)

select count(*) from comments

join blogs on blogs.comment_id

= comments.id where is_deleted

= false

Generating the comment count tag costs 1.2s
on a 20k-record database!

Performance challenges (2)

13

Our work

Synthesizing efficient
user-interface design

ICSE ’19

Detecting inefficient
database-API usage

FSE ’18

Taxonomy of
performance issues
in web applications

ICSE ’18

Detecting inefficient
database design

CIKM ’17

Improving performance and correctness of web applications
using cross-stack and user-interface optimization

14

Performance

Correctness

Detecting data
constraint conflict

Synthesizing web
application given priority

John Vlissides AwardOur work

Synthesizing efficient
user-interface design

ICSE ’19

Detecting inefficient
database-API usage

FSE ’18

Taxonomy of
performance issues
in web applications

ICSE ’18

Detecting inefficient
database design

CIKM ’17

SIGSOFT Distinguished Paper

ICSE ’20

CIDR ’20

Refactoring code
upon schema change

ASE ’21

Improving performance and correctness of web applications
using cross-stack and user-interface optimization

15

Detected thousands of

unknown bugs from

Discourse, Redmine, …

Raised attention in

open-source community,

HackerNews, RubyWeekly,

morning paper

16
Correctness

Outline

Detecting data
constraint conflict

Synthesizing efficient
user-interface design

ICSE ’19

Detecting inefficient
database-API usage

FSE ’18

Taxonomy of
performance issues
in web applications

ICSE ’18

ICSE ’20

Refactoring code
upon schema change

ASE ’21

Future work

PerformancePerformance

Understanding performance problems

17

How not to structure your database-backed web applications: a study of performance bugs in the wild. ICSE ’18
Yang Junwen, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung.

• Why? many complaints and yet no comprehensive studies

Goals of our study

What are the common types
of performance problems?

How severe are the
performance problems?

How complicated are the
fixes?

18

Methodology

• 12 most popular open-source Rails applications

• 204 real-world performance problems

• 140 known problems in old software versions

• 64 un-fixed problems in latest software versions

• Discovered by our profiling

Category Name Stars

Forum
Discourse 22k

Lobsters 2.4k

Collaboration
Gitlab 49k

Redmine 3.6k

E-commerce

Spree 17k

Ror-
ecommerce

1.7k

Task-
management

Tracks 3.5k

Fulcrum 697

Social
Network

Diaspora 18k

Onebody 1.2k

Map
Openstreetmap 8k

Falling-Fruit 1.1k

19

What are the common types of inefficiency?

20

They will be introduced together with how we tackle them

Interface Application DB

24% 51% 25%

Anti-patterns across 3 layers

How severe are these inefficiencies?

> 60% cause
> 2X slowdowns

21

They are very costly!
0

5

10

15

20

25

30

<1.5x 1.5x-2x 2x-3x 3x-4x 4x-5x > 5

Slowdowns

In

ef
fi

ci
en

ci
es

Interface Application Database

0

5

10

15

20

25

30

1 1 ~ 5 5 ~ 20 10 ~ 20 20 ~ 50 50 ~ 100

How complicated are the fixes?

22

> 80% fixes require
<= 5 lines of code

Line of code change

Many patches are small!

In
ef

fi
ci

en
ci

es

Interface DatabaseApplication

23

• Well received by real-world web developers

• First comprehensive study of web apps' performance problems

• Motivation and guidance for follow-up research

1

1

2
3

1. https://news.ycombinator.com/item?id=17414383
2. https://www.yoranbrondsema.com/post/reflection-on-how-not-to-structure-your-database-backed-web-applications/
3. https://scoutapm.com/blog/part-i-how-not-to-structure-your-database-backed-web-apps

24

Performance

Correctness

Outline Introduction

Synthesizing efficient
user-interface design

ICSE ’19

Detecting inefficient
database-API usage

FSE ’18

Taxonomy of
performance issues
in web applications

ICSE ’18

Detecting data
constraint conflict

ICSE ’20

Refactoring code
upon schema change

ASE ’21

Future work

• Why?

0

5

10

15

20

25

30

<1.5x 1.5x-2x 2x-3x 3x-4x 4x-5x > 5

Slowdowns

In

ef
fi

ci
en

ci
es

Interface Application Database

Detecting and fixing performance-unfriendly interfaces

25

View-centric performance optimization for database-backed web applications. ICSE ’19
Yang Junwen, Cong Yan, Chengcheng Wan, Shan Lu, and Alvin Cheung.

User-interface optimization brings large performance gains

27

Examples

Asynchronous Loading

View-centric performance optimization, ICSE ‘19

1 2

Can we automate interface optimization

1. Interface Usability vs. Performance

28

http://www.app.com/blogs

…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

Optimization?

View-centric performance optimization, ICSE ‘19

http://www.app.com/blogs

… 😱Out of the scope of traditional code optimization

Can we automate interface optimization

1. Interface Usability vs. Performance

2. Code analysis & transformation across HTML, Ruby, SQL

29

Extend HTML parser to fully understand Ruby code and SQL?

View-centric performance optimization, ICSE ‘19

😱

Solutions: a new interface design framework

30

• Cost estimation & visualization

View-centric performance optimization, ICSE ‘19

http://www.app.com/blogs

…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

10001 comments

http://www.app.com/blogs

…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

10001 comments

Solutions: a new interface design framework

31

• Cost estimation & visualization

• Interface refactoring

View-centric performance optimization, ICSE ‘19

high

low

Removal
Approximation
Asynch loading

http://www.app.com/blogs

…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

10001 comments

Solutions: a new interface design framework

32

• Cost estimation & visualization

• Interface refactoring

View-centric performance optimization, ICSE ‘19

high

low

Removal
Approximation
Asynch loading

http://www.app.com/blogs

…
Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

This is Junwen’s defense.

20 + comments

Solutions: a new interface design framework

33

• Cost estimation & visualization

• Interface refactoring

View-centric performance optimization, ICSE ‘19

high

low

Undo
Removal
Asynch loading

http://www.app.com/blogs

…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

10001 comments

Solutions: a new interface design framework

34

• Cost estimation & visualization

• Interface refactoring

View-centric performance optimization, ICSE ‘19

high

low

http://www.app.com/blogs

…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

10001 comments

Solutions: a new interface design framework

35

• Cost estimation & visualization

• Interface refactoring

View-centric performance optimization, ICSE ‘19

high

low

pagination

http://www.app.com/blogs

…

< 1 2 3 4 >5 6 …

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

10001 comments

Solutions: a new interface design framework

36

• Cost estimation & visualization

• Interface refactoring

View-centric performance optimization, ICSE ‘19

• WHAT

• WHEN

• HOW

high

low

What are meaningful refactorings?

37

Optimization

View-centric performance optimization, ICSE ‘19

😆

😱Not an optimization

Pagination

http://www.app.com/blogs

…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

10001 comments

http://www.app.com/blogs

…

< 1 2 3 4 >5 6 …

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

20+ comments

38

PaginatingAsynchronous Loading

http://www.app.com/blogs

…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

10001 comments

http://www.app.com/blogs

…
This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

User-interface
refactoring
taxonomy

Displaying different format

Displaying simplified content
Tag Removal Approximation

http://www.app.com/blogs

…

< 1 2 3 4 >5 6 …

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

10001 comments

View-centric performance optimization, ICSE ‘19

When to conduct refactoring?

39

How to map interface design
strategy to program analysis routines?

Paginating: a long list of items on webpage

View-centric performance optimization, ICSE ‘19

40

render the blogs

<p id=‘count’><%= @count %> comments</p>

<% @blogs.each do |blog| %>

<%= blog.title %>

<% end %>

index.html.erb

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

@blogs = Blog.where(uid:?)

render `index.html.erb`

end

blogs_controller.rb

When to conduct pagination

View-centric performance optimization, ICSE ‘19

41

render the blogs

<p id=‘count’><%= @count %> comments</p>

<% @blogs.each do |blog| %>

<%= blog.title %>

<% end %>

index.html.erb

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

@blogs = Blog.where(uid:?)

render `index.html.erb`

end

blogs_controller.rb

When to conduct pagination?

View-centric performance optimization, ICSE ‘19

Scaling query
results?

A loop of html
component?

HOW1. Which application
code is used to generate
which HTML tag?

HOW2. Is this statement
mapped to a scaling query?

a long list of items on webpage

a list of items
on webpage

a list of items
on webpage

long

long

select * from blogs where uid = ?

42

render the blogs

<p id=‘count’><%= @count %> comments</p>

<% @blogs.each do |blog| %>

<%= blog.title %>

<% end %>

index.html.erb

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

@blogs = Blog.where(uid:?)

render `index.html.erb`

end

blogs_controller.rb

When to conduct pagination?

View-centric performance optimization, ICSE ‘19

Not a
scaling
query

Scaling query
results?

A loop of html
component?

Not a
loop

a list of items
on webpage

a list of items
on webpage

long

select count(*) from blogs join comments …

http://www.app.com/blogs

…

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

This is Junwen’s defense.

10001 commentshigh

low

Removal
Approximation
Asynch loading

pagination

When to conduct asynch load?

43
View-centric performance optimization, ICSE ‘19

Conceptually, every tag can be!

http://www.app.com/blogs

…

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

This is Junwen’s defense.

10001 commentshigh

low

The tag should be time-consuming

44

render the blogs

<p id=‘count’><%= @count %> comments</p>

<% @blogs.each do |blog| %>

<%= blog.title %>

<% end %>

index.html.erb

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

@blogs = Blog.where(uid:?)

render `index.html.erb`

end

blogs_controller.rb

When to conduct asynch load?

View-centric performance optimization, ICSE ‘19

O(N^3)

O(N^1)

• Estimating the cost of query
nodes based on API call chain

• Propagating the cost to HTML
nodes based on data dependency

To be asynch
loaded

Not to be
asynch loaded

HOW3: What is the
complexity of the
application code?

http://www.app.com/blogs

…

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

This is Junwen’s defense.

10001 commentshigh

low

The tag should be time-consuming HOW1. Which application
code is used to generate
which HTML tag?

45

When to conduct asynch load?

View-centric performance optimization, ICSE ‘19

The tag should be independent

query

tag2
tag1

Asynch tag1 != Asynch query

How to conduct refactoring?

• HOW1: Which application code is used to generate which HTML tag?

• HOW2: Is this statement mapped to a scaling query?

• HOW3: What is the complexity of the application code?

46

Extend Ruby compiler to understand selected HTML/ORM/SQL information

How to conduct refactoring?

• HOW1: Which application code is used to generate which HTML tag?

• HOW2: Is this statement mapped to a scaling query?

• HOW3: What is the complexity of the application code?

47

Extend Ruby compiler to understand selected HTML/ORM/SQL information

48

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

render `index.html.erb`

end

blogs_controller.rb
http://www.app.com/blogs

…

This is Junwen’s defense.

Performance and correctness problem.

Junwen is graduating.

Hyperloop can improve perf of web app.

Panorama is view-centric.

PowerStation is a RubyMine plugin.

10001 comments

render the number of comments

<p id=‘count’><%= @count %> comments</p>

index.html.erb

HOW1: Which application code is used to generate which HTML tag?

View-centric performance optimization, ICSE ‘19

If it is inside one program, a data dependency analysis will be enough
Assign @count

Comment.join(…)

49

render the blogs

<p id=‘count’><%= @count %> comments</p>

<% @blogs.each do |blog| %>

<%= blog.title %>

<% end %>

index.html.erb

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

@blogs = Blog.where(uid:?)

render `index.html.erb`

end

blogs_controller.rb

@count tag count

View-centric performance optimization, ICSE ‘19

HOW1: Which application code is used to generate which HTML tag?

50
View-centric performance optimization, ICSE ‘19

HOW1: Which application code is used to generate which HTML tag?

render the blogs

<p id=‘count’><%= @count %> comments</p>

<% @blogs.each do |blog| %>

<%= blog.title %>

<% end %>

index.html.erb

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

@blogs = Blog.where(uid:?)

render `index.html.erb`

end

blogs_controller.rb

@count tag count

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

@blogs = Blog.where(uid:?)

@count

@blogs.each do |blog|

blog.title

end

end

51
View-centric performance optimization, ICSE ‘19

tag count

blogs_controller.rb

HOW1: Which application code is used to generate which HTML tag?

52

Regular node

View node data edge

control edge

Extend the program dependency graph with tag information

View-centric performance optimization, ICSE ‘19

Assign @count

Comment.join(…)

<t> @count </t>

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

@blogs = Blog.where(uid:?)

@count

@blogs.each do |blog|

blog.title

end

end

tag count

blogs_controller.rb

53

Regular node

View node data edge

control edge

Extend the program dependency graph with tag information

View-centric performance optimization, ICSE ‘19

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

@blogs = Blog.where(uid:?)

@count

@blogs.each do |blog|

blog.title

end

end

blogs_controller.rb

tag count

tag blog

@blogs.each do |blog|

<t> blog.title </t>

Assign @blogs

Blog.where(…)

Assign @count

Comment.join(…)

<t> @count </t>

How to conduct refactoring?

• HOW1: Which application code is used to generate which HTML tag?

• HOW2: Is this statement mapped to a scaling query?

• HOW3: What is the complexity of the application code?

54

Extend Ruby compiler to understand selected HTML/ORM/SQL information

55

Regular node

View node data edge

control edge

Extend the program dependency graph with query information

View-centric performance optimization, ICSE ‘19

def index

Get the count of comments of the user

Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

Blog.where(uid:?)

end

blogs_controller.rb

@blogs.each do |blog|

<t> blog.title </t>

Assign @blogs

Blog.where(…)

Assign @count

Comment.join(…).count

<t> @count </t>
1. Will it return scaling query results

No aggregation, no limit keyword
2. Query cost information

join: N2, where: N if no index …

2 N3 N

1 Not a scaling query A scaling query

56

Extend the program dependency graph with query information

View-centric performance optimization, ICSE ‘19

def index

Get the count of comments of the user

@count = Comment.join(:blogs).where(uid:?).count

Get a user’s blogs

@blogs = Blog.where(uid:?)

end

blogs_controller.rb

1. Will it return scaling query results
No aggregation, no limit keyword

2. Query cost information
join: N2, where: N1 if no index …

N^3, aggregation

@blogs.each do |blog|

<t> blog.title </t>

Assign @blogsAssign @count

<t> @count </t>

N^1, scaling query

60

create page navigation bar
+ <%= will_paginate @blogs %>

views/blogs/index.html.erb

paginate the query
- @blogs = Blog.where(uid:?).order(:created)
+ @blogs = Blog.where(uid:?).order(:created).paginate()

controllers/blogs_controller.rb

Automatic fixing for pagination

61

create extra view file
+ <%= @count %>

views/blogs/_comment_cnt.html.erb

Automatic fixing for asynchronously loading

checking if blog exists
+ def comment_cnt
+ @count = Comments….count
+ render :partial => ‘comment_cnt’
+ end

contronllers/blogs_controller.rb

replacing original span
- <%= @count %>
- + <%= render_async _comment_cnt_path %>

views/blogs/index.html.erb

set routes
+ get :comment_cnt, :controller=>blogs

config/routes.rb

set application
+ <% content_for :render_async %>

Applications.html.erb

View-centric performance optimization, ICSE ‘19

149 optimization opportunities on 12 apps.

Speed up for 15 sampled opportunities.

62
View-centric performance optimization, ICSE ‘19

Evaluation results

63

8 groups of pages, 1.5s diff in load time.

100 participants from Amazon MTurk.

User Study on View Design

Performance Functionality

Overall
Preference

View the page and answer 3 questions:

View-centric performance optimization, ICSE ‘19

Evaluation results

65

70%

60%

50%

40%

30%

20%

10%

0

Prefer original page Prefer new page

Performance

How do you like the page-loading time?

Evaluation results

Approximate Asynch Paginate Removal

Approximate Asynch Paginate Removal Approximate Asynch Paginate Removal

66

70%

60%

50%

40%

30%

20%

10%

0

Prefer original page Prefer new page

FunctionalityPerformance

How do you like the page-loading time? How do you like the content rendered?

Evaluation results

Approximate Asynch Paginate Removal

67

70%

60%

50%

40%

30%

20%

10%

0

Prefer original page Prefer new page

Functionality OverallPerformance

Which web page do you like better?How do you like the page-loading time? How do you like the content rendered?

Evaluation results

Approximate Asynch Paginate Removal Approximate Asynch Paginate Removal

Approximate Asynch Paginate Removal

68

70%

60%

50%

40%

30%

20%

10%

0

Prefer original page Prefer new page

Functionality OverallPerformance

Which web page do you like better?How do you like the page-loading time? How do you like the content rendered?

Evaluation results

Approximate Asynch Paginate Removal Approximate Asynch Paginate Removal

Approximate Asynch Paginate Removal

69

70%

60%

50%

40%

30%

20%

10%

0

Prefer original page Prefer new page

Functionality OverallPerformance

Which web page do you like better?How do you like the page-loading time? How do you like the content rendered?

Evaluation results

Approximate Asynch Paginate Removal Approximate Asynch Paginate Removal

71

• Featured on morning paper

• Winning distinguished paper award

• First work that conducting user-interface optimization

• 100+ user-interface optimization detected and refactored

View-centric performance optimization, ICSE ‘19

72

Performance

Correctness

Outline Introduction

Synthesizing efficient
user-interface design

ICSE ’19

Detecting inefficient
database-API usage

FSE ’18

Taxonomy of
performance issues
in web applications

ICSE ’18

Detecting data
constraint conflict

ICSE ’20

Refactoring code
upon schema change

ASE ’21

Future work

Detecting and fixing inefficient use of ORM APIs

• Why?

• 51% of performance issues are caused by inefficient use of ORM APIs

73

Powerstation: Automatically detecting and fixing inefficiencies of database-backed web applications in ide. FSE ‘18
Yang Junwen, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung.

filter blogs in blocklist
blogs.reject do |b|

end
b.title in BlockList.all

74

checking if blog exists
if Blog.present?
…

end

load user from DB
user.reload
… # no reference to user

user.reload

Overly expensive query! Redundant queries! Query result is not used!

filter blogs in blocklist
+ blocks = BlockList.all
blogs.reject do |b|
- b.title in BlockList.all
+ b.title in blocks
end

load user from DB
- user.reload
… # no reference to user

user.reload

APIs

1.present?

2.exists?

Examples

Detecting inefficient database-API usage, FSE ’18

Time

2492ms

1ms

Query

select * from …

select 1 … Limit 1

if Blog.present?
…

end

checking if blog exists
- if Blog.present?
+ if Blog.exists?
…

end

select * from blocklists

Challenges

1. Existing compilers do not understand ORM APIs and SQL

75

filter blogs in blocklist
blogs.reject do |b|

end
b.title in BlockList.all

checking if blog exists
if Blog.present?
…

end

load user from DB
user.reload
… # no reference to user

user.reload

Detecting inefficient database-API usage, FSE ’18

Challenges

1. Existing compilers do not understand ORM APIs and SQL
Solved by our database-aware program dependency graph

2. Wide varieties of inefficiencies associated with ORM APIs

76

filter blogs in blocklist
blogs.reject do |b|

end
b.title in BlockList.all

checking if blog exists
if Blog.present?
…

end

load user from DB
user.reload
… # no reference to user

user.reload

Build one tool for each API mis-use?

Detecting inefficient database-API usage, FSE ’18

😱

Solutions

1. Existing compilers do not understand ORM APIs and SQL

77
Detecting inefficient database-API usage, FSE ’18

Solved by our database-aware program dependency graph

Solutions

1. Existing compilers do not understand ORM APIs and SQL

2. Wide varieties of inefficiencies associated with ORM APIs

Leveraging traditional compiler optimization algorithms

78

checking if blog exists
- if Blog.present?
+ if Blog.exists?
…

end

filter blogs in blocklist
+ blocks = BlockList.all
blogs.reject do |b|
- b.title in BlockList.all
+ b.title in blocks
end

load user from DB
- user.reload
… # no reference to user

user.reload

Strength reduction Loop-invariant motion Dead code elimination

Detecting inefficient database-API usage, FSE ’18

Solved by our database-aware program dependency graph

Cross-stack analysis

Extending the traditional program dependency

graph with selected query information:

• Will this ORM API be translated to a SQL query

• Is it a READ or a WRITE query

• What database table fields are accessed

79

data edge

control edge

Assign v1

BlockList.all

Regular node

Assign @blogs

Blog.where(…)

@blogs.each do |blog|

v1.include?blog

Query node

READ blogs all fields

READ blocklists all fields

filter blogs in blocklist
blogs.reject do |b|

end
b.title in BlockList.undeleted

Detecting inefficient database-API usage, FSE ’18

READ

READ

blogs all fields

blocklists all fields

Yes

Yes

Leveraging traditional optimization algorithms

Detection

• Locating query node inside one loop

• Checking whether it depends on nodes inside loop

Fixing

• Hoisting the query outside the loop

80

data edge

control edge
Assign v1

BlockList.undeleted

Regular node
Assign @blogs

Blog.where(…)

@blogs.each do |blog|

v1.include?blog

Query node

READ blogs all fields

READ blocklists all fieldsREAD blocklists all fields

Detecting inefficient database-API usage, FSE ’18

Taking loop-invariant query as an example

81

Previous work Our tool

Anti-pattern P1 P2 P3 PowerStation

Loop-invariant query

Dead-store query

Common sub-expr query

API misuses

Unused data-retrieval query

Inefficient rendering

Leveraging traditional optimization algorithms

Detecting inefficient database-API usage, FSE ’18

82

Detected thousands of

unknow bugs

and fixed hundreds of them

Plugin downloaded more

than 300 times

Summary of performance problems

• Cross-stack optimization is the key technique behind

• It’s not to extend one stack to fully understand another,

but use selective information

• User-interface optimization is important

• Performance unfriendly interface cannot be solved by traditional optimizer

83

84

Performance

Correctness

Outline Introduction

Synthesizing efficient
user-interface design

ICSE ’19

Detecting inefficient
database-API usage

FSE ’18

Taxonomy of
performance issues
in web applications

ICSE ’18

Detecting data
constraint conflict

ICSE ’20

Refactoring code
upon schema change

ASE ’21

Future work

Data constraints

85

Min length: 1

Format

Data constraints in web applications

• Large amount of data with many constraints

• Data checked across multiple stacks

• Frequent upgrades and migrations
Field Type Null …

title varchar(30) NO …

Field Type Null …

title varchar(60) YES …

77% fields with constraints
1.4 constraints per field

86

CREATE TABLE blogs (title

VARCHAR(30))

validates_length: title, max: 60,

message: ‘title is too long’

<input pattern=`.+` />

User interface Application Server DB engine

Managing data constraints in database-backed web applications, ICSE ’20

Detecting real-world constraint problems

Inconsistency across stacks

• 200+ fields forbidden to be null in app, but null by default in DB

• 88 fields required to be unique in app, but not so in DB

• 57 in(ex)clusion constraints specified in app, but missed in DB

• 133 conflicting length/numericality constraints between app and DB

Inconsistency across versions

• > 25% of changes tighten constraints on existing data fields

87
Managing data constraints in database-backed web applications, ICSE ’20

88

Performance

Correctness

Outline Introduction

Synthesizing efficient
user-interface design

ICSE ’19

Detecting inefficient
database-API usage

FSE ’18

Taxonomy of
performance issues
in web applications

ICSE ’18

Detecting data
constraint conflict

ICSE ’20

Refactoring code
upon schema change

ASE ’21

Future work

Schema changes in web applications

• 18 ~ 85% of application versions contain at least one schema change

• Changes to various aspects of the schema are all common

89
Automated Code Refactoring upon Database-Schema Changes in Web Applications, ASE ’21

Schema changes in web applications

• 18 ~ 85% of application versions contain at least one schema change

• Changes to various aspects of the schema are all common

• Changes are across the development history

90
Automated Code Refactoring upon Database-Schema Changes in Web Applications, ASE ’21

91

Field Type Null Default …

title varchar(30) NO NULL …

Table: blogs

Schema change requires app code change

blog = Blog.where(“title = ?”)

blog.title

blog = Blog.where(“header = ?”)

blog.header

migrate/rename.rb:
rename_column

:blogs, :title, :header
Field Type Null Default …

header varchar(30) NO NULL …

Automated Code Refactoring upon Database-Schema Changes in Web Applications, ASE ’21

Approach

• Extract schema change from migration files

• Extract queries using database aware program dependency graph

• Inconsistency detection and refactoring suggestion

92
Automated Code Refactoring upon Database-Schema Changes in Web Applications, ASE ’21

Evaluation result

93

Rails Django Total

of inconsistent queries 38 48 86

existing in release 20 10 30

of inconsistent queries in latest versions 1 10 11

Automated Code Refactoring upon Database-Schema Changes in Web Applications, ASE ’21

94

Performance

Correctness

Detecting data
constraint conflict

Optimization

Synthesis

Synthesizing web
application given priority

Conclusion

Synthesizing efficient
user-interface design

ICSE ’19

Detecting inefficient
database-API usage

FSE ’18

Taxonomy of
performance issues
in web applications

ICSE ’18

Detecting inefficient
database design

CIKM ’17

SIGSOFT Distinguished Paper

ICSE ’20

CIDR ’20

Refactoring code
upon schema change

ASE ’21

Conclusion

• Why were there so many problems?
• The huge gaps among web users, web apps, and DB engines

• The large scale of modern systems

• What is the solution?
• Synthesis?

• Better testing?

95

